

BTW nr.: BE 0887 763 992

www.eco-scan.be

NOISE LAB REPORT Number ASTM-2018_ES_211-I099_43432_E

Customer: Kinetics Middle East, LLC

P.O. Box: 37670

Dubai

United Arab Emirates

Contacts: Client: Karim Abouseda

Noise lab : Volker Spessart

Tests: Laboratory Measurement of the Effectiveness of Floor Coverings in Reducing Impact Sound

Transmission Through Concrete Floors.

Product name : KINLAYMENT 3mm

Normative references:

ASTM E2179 - 03 (2009) Standard Test Method for Laboratory Measurement of the Effectiveness of Floor Coverings in Reducing

Impact Sound Transmission Through Concrete Floors

Referenced documents:

E492- 09 Standard Test Method for Laboratory Measurement of Impact Sound Transmission Through

Floor-Ceiling Assemblies Using the Tapping Machine

E989- 06 (2012) Standard Classification for Determination of Impact Insulation Class (IIC)

NBN EN ISO 10140-1:2010 Acoustics - Laboratory measurement of sound insulation of building elements

- Part 1: Application rules for specific products

NBN EN ISO 10140-3:2010 Acoustics - Laboratory measurement of sound insulation of building elements

- Part 3: Measurements of impact sound insulation

NBN EN ISO 10140-4:2010 Acoustics - Laboratory measurement of sound insulation of building elements

- Part 4: Measurement procedures and requirements

NBN EN ISO 10140-5:2010 Acoustics - Laboratory measurement of sound insulation of building elements

- Part 5: Requirements for test facilities and equipment

 Date and reference of the request:
 8-Nov-2018
 2018_ES_211

 Date of receipt of the specimen (s):
 27-Nov-2018
 SONI099

Date of tests: 28-Nov-2018
Date of preparation of the report: 30-Nov-2018

This test report together with its annexes contains: 8 pages and must be multiplied only in its entirety.

Technical Manager,

Volker Spessart

BTW nr.: BE 0887 763 992

www.eco-scan.be

NOISE LAB REPORT Number ASTM-2018_ES_211-I099_43432_E

MEASURING EQUIPMENT

Source signal

Brüel & Kjaer - 4292 : Omni Power Sound Source

Brüel & Kjaer - 2716 : Power amplifier

Norsonic Nor277: Tapping machine conform ISO 10140-5 Annex E

Microphone and data acquisition system:

Brüel & Kjaer - 4189 : 1/2" free field microphone, 6Hz to 20kHz, prepolarized Brüel & Kjaer - ZC-0032 : 1/2" microphone preamplifier

Brüel & Kjaer - 4231 : Sound calibrator 94&114dB SPL-1000Hz, Fulfils IEC 60942(2003)Class1

Brüel & Kjaer - JP 1041 : dual 10-pole adaptor JP-1041

Brüel & Kjaer - 2270 : Sound level meter - dual channel instrument (measuring both channels simultaneously)

Conforms with IEC 61672-1 (2002-05) Class 1

Brüel & Kjaer - 3923 : rotating microphone boom

One rotating microphone system in the receiving room

Number of tapping machine positions: 4

> Minimum 0,7m between the different source positions Distances to the board of the floor at least 0.5 m Random positions and orientation of the tapping machine.

Number of microphone positions for each tapping machine position:

2 Microphone position with a rotating microphone

Number of rotations: 16 s/tr Rotation speed: Minimum rotation time: 30 s

Just not a rotation angle <10 $^{\circ}$ to the chamber surfaces

Data processing

Brüel & Kjaer - BZ-5503 : utility software for hand-held analyzers Brüel & Kjaer - BZ-7229 : dual-channel building acoustics software Brüel & Kjaer - 7830 : Qualifier Software for reporting results

A computer with proprietary software

48 s Averaging Time per measurement: 27 Number of reverberation time measurements (with graphic control):

Test chambers

Volume receiving room: 51.4 m³ 1814.9 ft³ Reference floor area: 12.00 m² 129.1 ft² 129.1 ft² Surface test floor: 12.00 m²

There is absorption material applied in the receiving room.

Standard floor

The standard concrete base floor used is a 140 mm thick solid reinforced concrete slab. According to ISO 10140-5 Annex C this is the "heavyweight standard floor".

www.eco-scan.be

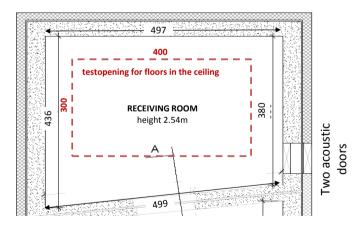
BTW nr.: BE 0887 763 992

NOISE LAB REPORT Number ASTM-2018_ES_211-I099_43432_E

STANDARD METHOD

Single rating numbers

Evaluation according to ASTM E2179-03 (2009) and E989-06 (2012) defines single-number ratings, IIC_c for the impact insulation class of floors and ΔIIC for the improvement in impact insulation class of floor coverings and floating floors from the results of measurements carried out in accordance with ASTM E492-09 and E2179-03 (2009).


The values obtained in accordance with ASTM E492-09 are compared with reference values at the frequencies of measurement within the range 100 to 3150 Hz for measurements in one-third octave bands.

SPECIAL MEASUREMENT CONDITIONS

Receiving room volume < 125 m³

Sound insulation test facilities

The test rooms meet the requirements of ISO 10140-5
Both rooms are isolated for vibrations by using a so called room-in-room construction.

Filename: report_blanco_ASTM_IMP_20180111

BTW nr.: BE 0887 763 992

www.eco-scan.be

NOISE LAB REPORT Number ASTM-2018_ES_211-I099_43432_E

NORMALIZED IMPACT SOUND PRESSURE LEVEL

Client: Kinetics Mid	dle East, LLC				Date of test:	28-Nov-18
Description o	f the test setup:					
45 m	m	= (1.77 inch)	prefab anhydrite screed slab		
3 m	m	= (0.12 inch)	KINLAYMENT 3mm		
140 m	m	= (5.51 inch)	heavyweight standard floor =	solid reinforced conci	rete slab
Source room:				Receiving roon	1:	
Temperature:	18.9 °C	=	66.0 °F	Temperature:	18.6 °C =	65.5 °F
Atmospheric pressure:	60 hPa	=	0.87 psi	Atmospheric pressure:	60 hPa =	0.87 psi
	1012.0 %RH			Relative humidity:	1012.0 %RH	
Relative humidity:	1012.0 /01111					
	1012.0 /01(11			Volume:	$51.4 \text{ m}^3 =$	1814.9 ft ³
	12.0 m ²	=	129.1 ft²	Volume:	51.4 m ³ =	1814.9 ft³
Relative humidity:		= =	129.1 ft ² 129.1 ft ²	Volume:	51.4 m³ =	1814.9 ft ³

f	L ₀ (f)	L _c (f)
	standard	standard floor
	floor	+ floor covering
(Hz)	(dB)	(dB)
50	48.8	41.5
63	54.7	51.1
80	59.9	60.0
100	56.0	57.7
125	59.8	58.6
160	61.3	62.2
200	64.8	62.8
250	66.9	61.4
315	69.6	59.9
400	68.7	58.2
500	69.8	55.1
630	70.4	55.3
800	71.6	52.0
1000	71.9	49.9
1250	71.4	48.8
1600	72.0	46.1
2000	71.6	41.8
2500	70.8	39.0
3150	70.1	38.4
4000	67.9	34.8
5000	64.4	30.3

ASTM E492-09 & E989-06 (2012)	IIC in dB
	55

b	: background noise correction used
В	: Maximum background noise correction used
	Ln=< value shown

f	L _d (f)	L_{ref}	$L_{ref,c}$
		reference floor	reference floor
			+ floor covering
	$L_0(f) - L_c(f)$	(accord. ASTM E2179-03)	L _{ref} - L _d
(Hz)	(dB)	(dB)	(dB)
50	7.3	/	1
63	3.6	/	1
80	-0.1	/	1
100	-1.7	67.0	68.7
125	1.2	67.5	66.3
160	-0.9	68.0	68.9
200	2.0	68.5	66.5
250	5.5	69.0	63.5
315	9.7	69.5	59.8
400	10.5	70.0	59.5
500	14.7	70.5	55.8
630	15.1	71.0	55.9
800	19.6	71.5	51.9
1000	22.0	72.0	50.0
1250	22.6	72.0	49.4
1600	25.9	72.0	46.1
2000	29.8	72.0	42.2
2500	31.8	72.0	40.2
3150	31.7	72.0	40.3
4000	33.1	/	1
5000	34.1	1	I

L0(f): normalized impact sound level for the standard concrete floor

ASTM E2179-03 & E989-06 (2012)

Lc(f): normalized impact sound level for the standard floor with floor covering

 $\label{eq:local_local_local} Ld(f) \hbox{: reduction of impact sound pressure level due to the floor covering}$

Lref(f): assumed normalized impact sound level for the reference concrete floor

 $Lref, c(f): assumed \ normalized \ impact \ sound \ level \ for \ the \ reference \ floor \ with \ floor \ covering$

 IIC_{c} in dB

51

∆IIC in dB

23

BTW nr.: BE 0887 763 992

www.eco-scan.be

28-Nov-18

NOISE LAB REPORT Number ASTM-2018_ES_211-I099_43432_E

 $\mathbf{L}_{\mathbf{n}}$

NORMALIZED IMPACT SOUND PRESSURE LEVEL in accordance with ASTM E492-09 / ASTM E 989 - 06

Client: Kinetics Middle East, LLC Date of test:

Description of the test setup:

45 mm = (1.77 inch) prefab anhydrite screed slab 3 mm = (0.12 inch) KINLAYMENT 3mm

140 mm = (5.51 inch) heavyweight standard floor = solid reinforced concrete slab

Reference floor area : 12.0 m 2 = 129.1 ft 2 Tested floor area : 12.0 m 2 = 129.1 ft 2 Signal : Standard tapping machine with steel-headed hammers.

According ASTM E492-09 & E989-06 (2012)

According	g ASTM E4	192-09 & E989-
f	L _n	(*)
(Hz)	(dB)	
1/3 octave	bands: =	
50		
63		
80		
100	58	
125	59	
160	62	
200	63	
250	61	
315	60	
400	58	
500	55	
630	55	
800	52	
1000	50	
1250	49	
1600	46	
2000	42	
2500	39	
3150	38	
4000		
5000		

- $(\mbox{\ensuremath{^{*}}})\ \mbox{\ensuremath{b}}\ :$ background noise correction used
 - B : Maximum background noise correction used Ln=< value shown

70.0 Ln curve -IIC Contour 60.0 Deficiencies 50.0 40.0 Ln [dB] 30.0 20.0 10.0 5 4 2 1 0 0 0 0 0 0.0 125 160 200 100 315 400 500 630 800 Frequency (Hz)

Rating according to ASTM E 989 - 06

Impact Insulation Class IIC: 55 dB

Evaluation based on laboratory measurement results obtained in one-third-octave bands by an engineering method

No.of test report: SONI099 Name of test institute: eco-scan bvba
Date: Signature: Volker Spessart

BTW nr.: BE 0887 763 992

www.eco-scan.be

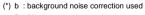
NOISE LAB REPORT Number ASTM-2018_ES_211-I099_43432_E

L_{n, ref, c}

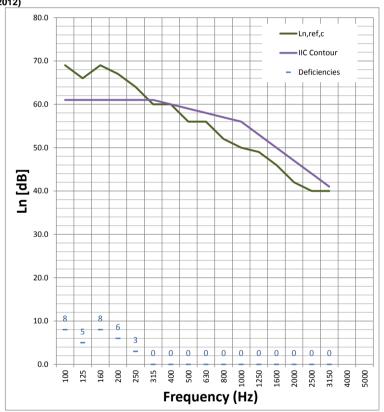
NORMALIZED IMPACT SOUND PRESSURE LEVEL in accordance with ASTM E2179-03 / ASTM E 989 - 06

Client: Kinetics Middle East, LLC Date of test: 28-Nov-18

Description of the test setup:


45 mm = (1.77 inch) prefab anhydrite screed slab 3 mm = (0.12 inch) KINLAYMENT 3mm

140 mm = (5.51 inch) heavyweight standard floor = solid reinforced concrete slab


Reference floor area : 12.0 m 2 = 129.1 ft 2 Tested floor area : 12.0 m 2 = 129.1 ft 2 Signal : Standard tapping machine with steel-headed hammers.

According ASTM E2179-03 & E989-06 (2012)

According ASTM E2179-03 & E989				
f	$L_{n,ref,c}$	(*)		
(Hz)	(dB)			
1/3 octave	bands : 💻			
50				
63				
80				
100	69			
125	66			
160	69			
200	67			
250	64			
315	60			
400	60			
500	56			
630	56			
800	52			
1000	50			
1250	49			
1600	46			
2000	42			
2500	40			
3150	40			
4000				
5000				

B : Maximum background noise correction used Ln=< value shown

Rating according to ASTM E 989 - 06

Impact Insulation Class IIC₀: 51 dB Improvement of Impact Insulation Class ΔIIC: 23 dB

Evaluation based on laboratory measurement results obtained in one-third-octave bands by an engineering method

No.of test report: SONI099 Name of test institute: eco-scan byba
Date: Signature: Volker Spessart

eco-scan bvba Industrieweg 114H B-9032 Wondelgem Belgium BTW nr.: BE 0887 763 992

www.eco-scan.be

NOISE LAB REPORT Number ASTM-2018_ES_211-I099_43432_E

ANNEX 1: Description of test items by manufacturer

Total thickness =

 $The \ test \ sample \ description \ given \ by \ manufacturer \ is \ checked \ visually \ as \ good \ as \ possible \ by \ the \ laboratory.$

The correspondence between the test element and the commercialized product is the sole responsibility of the manufacturer

188

Description of the test element as a layered structure

	Thickness		m"	m"	
	(mm)	ρ (kg/m³)	(kg/m²)	(PSF)	Description of the layer
1	45		90	18.4	prefab anhydrite screed slab
2	3				KINLAYMENT 3mm
3	140	2300	322	65.9	heavyweight standard floor = solid reinforced concrete slab
4					
5					
6					
7					
8					
9					
10					

= (

7.40 inch)

KINLAYMENT 3mm
It is a floating floor underlayer product for impact and airborne sound isolation.

Filename: report_blanco_ASTM_IMP_20180111

eco-scan bvba Industrieweg 114H B-9032 Wondelgem Belgium BTW nr.: BE 0887 763 992

www.eco-scan.be

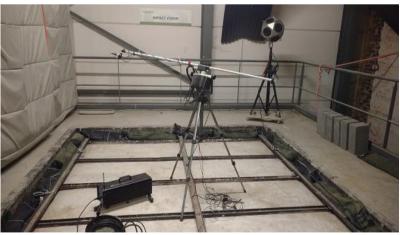
NOISE LAB REPORT Number ASTM-2018_ES_211-I099_43432_E

ANNEX 2: photographs of the test element or the test arrangement

Description of the assembly or drawing or photo

The floating floor underlayer product was placed on the standard concrete floor.

Then a prefab anhydrite screed slab was placed on top.


The topfloor had no rigid contact with the test opening construction. Gaps between the topfloor and the test opening were filled-up with sound-absorbing material.

Additionally sandbags were placed around the perimeter edges

Remark: the sound-absorbing material and sandbags are not a part of the floating floor product.

Filename: report_blanco_ASTM_IMP_20180111